Solutions for material testing and accelerated weather testing

Outdoors usage over many years – and concomitant exposure to pollutants and stresses – puts the life expectancy of installation screws to the test. A solution to the problem was found in the combination of a correct coating and protective grease. Our task was to show the feasibility of this technological solution.

Its correct functioning was finally tested in a multi-stage weather test, which consisted of varying solar radiation conditions, and alternation of hot and humid with freezing temperatures. In addition, the products were exposed to corroding solutions. The test results we obtained convinced us that the technological solution is successful.

“I am responsible for reporting our test results. My strength is understandable but at the same time accurate and scientific reporting of results. In reporting, it is not sufficient that the contents are technically correct. Results must also be observational and illustrative.” Riitta Perälä, Ph.D Materials Physics, Solar Simulator Ltd.

Contact us here >>

Environment and Ageing Analysis

To get reliable test results, a survey of the future use environment of the product or material is used as a background support. In addition to the environmental condition, also the business environment and the end customer’s requirements and even the ‘modus operandi’ can affect the testing to be carried out.

The environment and ageing analysis provides information about essential stress factors that affect the ageing and functioning on the product in real use conditions. We have access to a large climatic database covering the different parts of the globe. The data and calculation models of that database are utilized inthe selection and design of the testing method.

As the outcome of environment and ageing analysis a proposition about a suitable testing method for accelerated weather testing and for the results that can be achieved with it emerges.

Figure: For example, the colour of plastic material very rarely changes evenly with time. The biggest change usually occurs within a short space of time. With time, plastic loses also its mechanical properties. The extent or significance and the corresponding times vary according to materials and products.

Comparative Analysis

The testing outcome is obtained by comparing the changes observed in the testing sample to a suitable reference sample. The comparison material or sample could be, for example, a prevision version of the product, some competing material or production method or a standardized Blue Wool reference. Comparisons can also be made between different operation environments when the market area changes.

A typicall example of comparative testing would be comparison between colouring and stabilizing agents used in plastics and coatings, as well as optimization of the amount of UV stabilization agent to reach sufficient UV resistance. Usefulness of optimization becomes apparent both in the quality of the product as well as in production costs.

Accelerated exposures to UV radiation are commonly used in comparative testing as an alternative to solar radiation (uv+vis+ir). Also other stress factors can be used in the testing, starting from various chemicals and salt mist to cyclic heat and humidity.

Changes occuring in products and materials are measured during exposures. The most common measurements are colour and gloss measurements as well as tensile strength, elongation and resistance to impact.

Functional Test

Functional testing ensures faultless operation of the product even in strenuous conditions.

The testing is usually carried out in different conditions of solar radiation, temperature and moisture, but when neccessary we can also add other stresses such as chemical stress or air pressure changes to a test. In functional testing, exposure durations typically are short, from some hours to a few days. The stress of the product can be based on a certain standard, for example on IEC 68-2-x or MIL810x, or the stress can be tailored in accordance with the product’s real operation conditions.

Extreme testing conditions have included vehicle cabin tests in ‘desert conditions’ or ‘in a deep mine’, weapon tests ‘at the altitude of 11 km’ and mechanical operation tests ‘at the depth of 30 meters in sea water’. The products being tested are often at their development phases, but also products already in the markets are tested.

The outcome of the test is a verification that the product functions well in the conditions tested or information about what property of the product could still be improved.

Corrosion testing

Salt mist (NaCl 5%), modified salt mist, chemical exposure

  • IEC 68-2-11 / SFS-EN 60068-2-11, Salt mist
  • ISO 9227 Salt mist
  • MIL-STD 810G 509.5 Salt fog
  • MIL-STD-810G, 512.5 Immersion
  • MIL-STD-810G, 512.5 Immersion
  • MIL-DTL-11352K, 3.7.8 Corrosion resistance
  • MIL-DTL-62420B, 4.10.3 Salt fog
  • EN 50483-6, Prohesion
  • EN 50483-6 8.4.1, Salt mist
  • ASTM G85-02 / A5, Prohesion
  • JESD22-A107B, Salt atmosphere
  • etc.

Colour Stability

Colour is often a part of the product’s or sometimes even the whole company’s identity. Colour, visual identity and appearance are assosiated with quality and durability. For example, faded orange colour of a life jacket does not increase trust to its functionality even though the jacket will still keep its wearer afloat in a emergency. The technical life-time of the product often is longer than suggested by its external appearance.

Colour stability is examined by accelerated testing in which principally UV radiation is used for exposure and measurements for colour and gloss are done at regular intervals . Alongside with these accurate measurement results, also visual assessment is used: for example, the Grey Scale with which visual observations can be presented also numerically. As alternatives to UV radiation, also solar radiation (uv+visible light+thermal radiation) and internal lightings of various kinds are used. The operation conditions of end product and the application target determine the most suitable testing method.

Colour change in materials can be controlled, among other things, by UV stabilization agents, correct dyes and pigments, protective coatings and optimazion of the production methods.

As a testing outcome, information about the product’s change of colour during testing and how the eye perceives that possible change is obtained. By utilizing reference materials, it is possible to provide an estimate about the time it takes to undergo a colour change in natural conditions.

Optical Analysis

Changes, such as colour change, that take place during exposure are optically measured. In addition to colour, most typical optical values measured are transmittance, reflectance, absorbance and haze. We also measure gloss, yellowness index and colour aberrations.

The colour change during testing is estimated from the colour change (DE) calculated from the measured L* a* b* colour coordinates. Colour change is defined in such a way that a change of one unit in magnitude corresponds to a change that can just about be perceived by the eye. A change in gloss is estimated with the help of the residual gloss, which corresponds to a percantage change in the gloss

We provide measurements such as light distribution and light flux measurements related to lamps and luminaires. We are also lisenced to measure the optical properties, irradiance, of lamps designed of explosive atmospheres.

Our optics measurement service helps in all things related to optical measurements.

  • ASTM D1044-05 Standard Test Method for Resistance of Transparent Plastics to Surface Abrasion haze
  • CIE1976 Colour coordinates
  • DIN 67530:1982 Gloss
  • ISO 2810:1999 Gloss
  • ISO 105-03: 1993 Visual inspection, Grey Scale
  • ASTM E313 Yellowness Index
  • ASTM D 1003-07 Haze luminous transmittance of transparent plastics
  • ISO 9050:2003 Optical properties of Glazing
  • ISO 13803-2000 Reflection Haze
  • ISO 14782-1999 Haze
  • ISO 13468-2-1998 luminous transmittance
  • ISO FDIS 13837 Safety Glazing Solar Transmittance 2008
  • E1477-98A luminous reflectance
  • Total Solar Heat Transmittance
  • Total Solar Heat Reflectance

Test reports

A proper and easily understood report

All our reports contain testing sample documentation, equipment specification and calibration data for traceability. Reports are submitted in PDF form within two working days of the end of testing.

An Exposure Report is for situations in which the customer takes its own readings and analyses the sample. In this case, the report will not contain any observations, conclusions or recommendations concerning the sample. The Exposure Report contains a description of the exposure method as well as information on the measured and verified conditions during the exposure.

A Comprehensive Test Report is for situations in which sample readings are taken and other observations are made in addition to the exposure. The report contains test conditions documentation as well as measurement results, test method validation and the final test result concerning all specified samples.

A Customized Test Report is for situations in which the customer has its own measurement results or other information to be included in the above-mentioned reports in order to supplement the testing entity. A Customized Test Report is thus not an independent type of report.

An Executive Summary is for situations in which targeted information is to be provided to partners, subcontractors or customers. Testing reports focus on a certain result, measurement or product attribute. An Executive Summary can also be published, upon agreement.

Reporting service. We also report on, for example, the customer’s own tests and measurements based on documents and test data. We can also serve as a “third party”, an impartial expert and test monitor.

The SOSIFI Library is a tool for our customers’ sales and marketing. The open SOSIFI Library publishes select data on product durability or functionality that is relevant to the end user and consumer. The SOSIFI Library contains a brief summary of the results obtained. In addition, a detailed report on the testing conducted and its basis is also openly available. Testing can also be conducted by another testing facility or the customer itself. Testing and its documentation must be reliable and professional.

Testing technology

Questions and needs arisen from our customers set the framework of the technology we use

The versatile use of technologies is based on our profound skills, comprehensive set of measurement equipment, and independence of test chamber manufacturers.

To simulate the natural solar radiation, we use metal halide lamps, xenon lamps and a combination of lamps. UV radiation source is selected according to the desired spectral region, i.e. UVA or UVB, and the intensity, which is adjustable from low indoor illumination levels to multiple outdoor levels. We are able to control and record the spectrum and intensity of the radiation we generate.

Our flexibility in the corrosion testing is based on our test device development. We have control over all the spraying parameters. Even harsh chemicals can be applied in a controlled way.

We have a wide variety of optical measurement equipment, especially applicable for monitoring the changes in samples occurring in the accelerated weather tests and controlling the exposure conditions. We use e.g. spectroradiometers, precision pyranometers and spectrophotometers. Our measurement range in wavelength scale is from 190 nm to 20 microm.

We use a technology most suitable for the specific test to find out the information of our customer’s primary interest. Each test procedure can be designed according to the expected end-use conditions of the product.

Solar testing vs. UV testing

Solar Radiation vs. UV strain

The ageing of a product in its conditions of use is the sum of several factors. The radiation strain caused by the sun plays a remarkable role in the ageing of materials outdoors and indoors near the window. Solar radiation consists of ultraviolet, visible, and infrared radiation.

UV radiation specifically is often the component most responsible for ageing materials. Paint factories, for example, largely use equipment producing only uv radiation in their materials testing.

UV testing has the advantage of not “wasting” electricity in order to produce longer-wave radiation. Testing costs will be lower than in full-spectrum solar radiation testing.

In uv testing, it must be remembered that the ageing produced by visible light and infrared radiation will remain untested. Such a test will serve to remove those samples which have not stood ultraviolet radiation and therefore solar radiation – which is a notable advantage. However, it cannot be stated outright which sample will withstand natural light the best.

Tailored uv tests will be done on the basis of radiation studies and the intended ageing span.

Trainig Services: Solar effects and solar/uv testing

Koulutus on suunnattu tuotesuunnittelijoille ja tuotepäälliköille, testaussuunnittelijoille ja testaajille, mekaniikka- ja lämpösuunnittelijoille sekä muille sää-, materiaali- ja ympäristötestausta työssään tarvitseville.

Koulutus on suomenkielinen ja se pidetään asiakkaan tiloissa. Koulutusryhmän sopiva koko on 10 – 25 osallistujaa.

Ota yhteyttä ajankohdan sopimiseksi.

“Koulutuksen sisältö oli juuri sitä mitä työssä tarvitsemme”Janne Lappalainen, Laboratory Manager, Ensto Finland Oy

Tuotteen elinkaari – hallinnalla merkittävää kilpailuetua

Tuotteen elinkaari tarkoittaa tuotteen eliniän kaikkia vaiheita raaka-aineiden tuottamisesta käytöstä poistamiseen asti. Se on kannattavaa huomioida kaikessa yrityksen toiminnassa. Tuotteen elinkaarianalyysi antaa olennaista tietoa sekä kehityskohdista että siitä, missä ollaan jo onnistuttu. Se auttaa kokonaisuuden hahmottamista, ja sen avulla pystytään ylläpitämään tuotestrategian tasapainoa ja kohdistamaan resurssit paremmin.

Samankaltaisissa olosuhteissa ja ympäristöissä käytetyn saman tuotteen eliniän ei tulisi poiketa liiaksi keskiarvosta. Mikäli tuotteen elinkaariajattelu on laiminlyöty, tulee vastaan ikäviä yllätyksiä. Tuotteen mahdollisten käyttöolosuhteiden testaaminen on kannattavaa sekä kustannusten, resurssienhallinnan että loppukäyttäjän kannalta. Tuotteen elinkaaren hallinta muodostaa täten myös huomattavan kilpailuedun.

Taloudellinen, ympäristöllinen ja sosiaalinen tuotteen elinkaari

Elinkaariajattelussa keskitytään sekä ympäristövaikutuksiin, taloudellisuuteen että sosiaalisiin vaikutuksiin. Ne liittyvät kiinteästi toisiinsa.

Tuotteen elinkaarta voidaan kuvata vaiheittain. Jokainen vaihe tarvitsee erilaisia resursseja, kuten esimerkiksi puuta tai työtunteja, ja toiminnan tuloksena syntyy erilaisia tuotoksia, kuten sivutuotteita tai jätteitä. Kestävän kehityksen kannalta tuotteen elinkaariajattelussa tarkastellaan hiilidioksidipäästöjä ja muita ympäristövaikutuksia, kuten vesien rehevöitymistä tai maaperän toksisuutta. Jo tällä hetkellä monet yritykset kehittävät tuotteita yhtenä kokonaisuutena, johon ympäristövaikutukset kiinteästi liittyvät. Tuotteen elinkaari ei välttämättä pääty käytöstä poistamiseen: siitä voi tulla osa uutta tuotantoprosessia esimerkiksi osia kierrättämällä.

Sosiaalisen elinkaaren arvioinnilla on tarkoitus selvittää mahdolliset sosiaaliset positiiviset ja negatiiviset vaikutukset, joita kohdistuu tuotteen elinkaaren aikana eri sidosryhmiin. Se tarkoittaa esimerkiksi sitä, miten ihmisoikeuksia kunnioitetaan kussakin elinkaaren vaiheessa. Tuotantoketju ulottuu useimmissa tapauksissa lukuisiin eri maihin, ja monessa tapauksessa sosiaalisen elinkaaren vaikutusten jäljittäminen kokonaisuudessaan on hankalaa.

Taloudellinen näkökulma kietoutuu kaikkeen elinkaariajatteluun, eikä esimerkiksi ympäristöystävällinen tuote sulje pois kustannustehokkuutta. Mitä enemmän pystytään esimerkiksi hyödyntämään kierrätysmateriaaleja ja sitä edullisemmaksi prosessi yritykselle voi tulla.

Tuotteen elinkaaren neljä markkinavaihetta

Markkinoiden näkökulmasta tuotteen elinkaari on jaettu neljään eri vaiheeseen: esittelyyn, kasvuun, kypsyyteen ja laskuun.

Esitelyvaihe on usein yritykselle kaikkein kallein. Markkinat ovat vielä pienet, mutta esimerkiksi tuotekehitys ja -testaus sekä markkinointi nielevät rutkasti valuuttaa.

Kasvuvaiheessa myynnin ja näin ollen myös voittojen odotetaan nousevan. Yritys pystyy investoimaan markkinointiin ja tuotteen esilletuomiseen aiempaa enemmän maksimoidakseen kasvuvaiheen tarjoaman potentiaalin.

Kypsyysvaiheessa tuote on vakiinnuttanut asemansa, ja tähtäimessä on tuon saavutetun aseman pitäminen. Todennäköisesti kilpailu on kovimmillaan tässä vaiheessa, ja esimerkiksi tuotteen parantelu tai tuotantoprosessin kehitys voi tuoda kilpailuetua.

Laskuvaiheessa tuotteen markkinat alkavat kutistua joko kyllääntymisestä tai erityyppiseen tuotteeseen siirtymisestä johtuen. Laskuvaiheestakin on mahdollista saada voittoa esimerkiksi siirtymällä halvempiin tuotantotapoihin ja laskemalla hintaa.

 

Sään-, ympäristön- ja materiaalien keston selvittäminen tarkentaa elinkaarianalyysia huomattavasti. Kilpailuetua ei synnytä yksin selvityksen tulos vaan sen vieminen yrityksen arvolupaukseen, markkinointiin ja viestintään sekä tukemaan asiakkaan ostoprosessia.